## **Vectors**

## **Assertion & Reason Type Questions**

Directions: In the following questions, each question contains Assertion (A) and Reason (R). Each question has 4 choices (a), (b), (c) and (d) out of which only one is correct. The choices are:

- a. Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
- b. Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)
- c. Assertion (A) is true but Reason (R) is false
- d. Assertion (A) is false but Reason (R) is true

Q1.

Assertion (A): The magnitude of the resultant of vectors  $\overrightarrow{a} = 2 \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$  and  $\overrightarrow{b} = \overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k}$  is  $\sqrt{34}$ .

Reason (R): The magnitude of a vector can never be negative.

**Answer: (b)** Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)

Q2.

Assertion (A): The unit vector in the direction of sum of the vectors  $\hat{i} + \hat{j} + \hat{k}$ ,  $2\hat{i} - \hat{j} - \hat{k}$  and  $2\hat{j} + 6\hat{k}$  is  $-\frac{1}{7}(3\hat{i} + 2\hat{j} + 6\hat{k})$ .

Reason (R): Let  $\overrightarrow{a}$  be a non-zero vector, then  $\overrightarrow{a}$  is  $|\overrightarrow{a}|$ 

a unit vector parallel to  $\vec{a}$ .

Answer: (d) Assertion (A) is false but Reason (R) is true



Assertion (A): If the points  $\overrightarrow{P} = (\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c})$ ,

 $\overrightarrow{Q} = (2\overrightarrow{a} + \overrightarrow{b})$  and  $\overrightarrow{R} = (\overrightarrow{b} + \overrightarrow{t} \overrightarrow{c})$  are collinear, where

 $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  are three non-coplanar vectors, then the value of t is -2.

Reason (R): If P,Q,R are collinear, then  $\overrightarrow{PQ} \mid | \overrightarrow{PR}$  or  $\overrightarrow{PQ} = \lambda \overrightarrow{PR}$ ,  $\lambda \in R$ .

**Answer: (a)** Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)

Q4.

Assertion (A): The adjacent sides of a parallelogram are along  $\overset{\rightarrow}{a}=\overset{\wedge}{i}+\overset{\wedge}{2}\overset{\wedge}{j}$  and  $\overset{\rightarrow}{b}=\overset{\wedge}{2}\overset{\wedge}{i}+\overset{\wedge}{j}$ . The angle between the diagonals is 150°.

Reason (R): Two vectors are perpendicular to each other if their dot product is zero.

**Answer : (d)** Assertion (A) is false but Reason (R) is true **Q5.** 

Assertion (A): If  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ ,  $|\overrightarrow{a}| = 3$ ,  $|\overrightarrow{b}| = 4$ ,

 $|\overset{\rightarrow}{c}| = 5$ , then  $\overset{\rightarrow}{a} \cdot \overset{\rightarrow}{b} + \overset{\rightarrow}{b} \cdot \overset{\rightarrow}{c} + \overset{\rightarrow}{c} \cdot \overset{\rightarrow}{a}$  is equal to -25.

Reason (R): If  $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ , then the angle  $\theta$ 

between  $\overset{\rightarrow}{b}$  and  $\overset{\rightarrow}{c}$  is given by  $\cos \theta = \frac{\overset{\rightarrow}{a^2} - \overset{\rightarrow}{b^2} - \overset{\rightarrow}{c^2}}{\overset{\rightarrow}{2}\overset{\rightarrow}{b}\overset{\rightarrow}{c}}.$ 

**Answer: (b)** Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)



Q6.

Assertion (A): The length of projection of the vector  $3\hat{i} - \hat{j} - 2\hat{k}$  on the vector  $\hat{i} + 2\hat{j} - 3\hat{k}$  is  $\frac{7}{\sqrt{14}}$ .

Reason (R): The projection of a vector  $\overrightarrow{a}$  on another vector  $\overrightarrow{b}$  is  $\frac{(\overrightarrow{a} \cdot \overrightarrow{b})}{|\overrightarrow{b}|}$ .

**Answer: (a)** Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)

Q7.

Let  $\overset{\rightarrow}{a}$  and  $\overset{\rightarrow}{b}$  be proper vectors and  $\theta$  be the angle between them.

Assertion (A):  $(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 \neq (\overrightarrow{a})^2 (\overrightarrow{b})^2$ 

Reason (R):  $\sin^2 \theta + \cos^2 \theta = 1$ 

Answer: (d) Assertion (A) is false but Reason (R) is true Q8.

Assertion (A): If  $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ ,  $\overrightarrow{a} \cdot \overrightarrow{b} = 0$  and  $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ , where  $\overrightarrow{c} = -2 \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ , then  $\overrightarrow{b} = (0, 1, 1)$ .

Reason (R): If  $\overrightarrow{a} = x_1 \stackrel{\land}{i} + y_1 \stackrel{\land}{j} + z_1 \stackrel{\land}{k}$  and

 $\overrightarrow{b} = x_2 \stackrel{\wedge}{i} + y_2 \stackrel{\wedge}{j} + z_2 \stackrel{\wedge}{k}$ , then

$$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{x}_2 & \mathbf{y}_2 & \mathbf{z}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{z}_1 \end{vmatrix}.$$

**Answer : (c)** Assertion (A) is true but Reason (R) is false



Q9.

Assertion (A): If  $(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 = 400$  and  $|\overrightarrow{a}| = 4$ , then  $|\overrightarrow{b}| = 9$ .

Reason (R): If  $\stackrel{\rightarrow}{a}$  and  $\stackrel{\rightarrow}{b}$  are any two vectors, then  $(\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})^2 = (\stackrel{\rightarrow}{a})^2 (\stackrel{\rightarrow}{b})^2 - (\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b})^2$ .

Answer: (d) Assertion (A) is false but Reason (R) is true



Assertion (A): The position of a particle in a rectangular coordinate system is (3, 2, 5). Then its position vector be  $2\hat{i} + 5\hat{j} + 3\hat{k}$ .

**Reason (R):** The displacement vector of the particle that moves from point P(2, 3, 5) to point Q(3, 4, 5) is  $\hat{i} + \hat{j}$ .

Ans. Option (D) is correct.

Explanation: Assertion (A) is wrong.

The position of a particle in a rectangular coordinate system is (3, 2, 5). Then its position vector be  $3\hat{i} + 2\hat{j} + 5\hat{k}$ .

Reason (R) is correct.

The displacement vector of the particle that moves from point P(2, 3, 5) to point Q(3, 4, 5)

$$= (3-2)\hat{i} + (4-3)\hat{j} + (5-5)\hat{k}$$
$$= \hat{i} + \hat{j}$$

Assertion (A): The direction of cosines of vector  $\vec{A} = 2\hat{i} + 4\hat{j} - 5\hat{k}$  are  $\frac{2}{\sqrt{45}}$ ,  $\frac{4}{\sqrt{45}}$ ,  $-\frac{5}{\sqrt{45}}$ .

Reason (R): A vector having zero magnitude and arbitrary direction is called 'zero vector' or 'null vector'.

Ans. Option (B) is correct.

Explanation: Assertion (A) is correct.

Direction cosines of  $\vec{A} = 2\hat{i} + 4\hat{j} - 5\hat{k}$  are :

Direction cosines of 
$$A = 2i + 4j - 5k$$
 are:
$$\frac{2}{\sqrt{2^2 + 4^2 + (-5)^2}}, \frac{4}{\sqrt{2^2 + 4^2 + (-5)^2}}, \frac{-5}{\sqrt{2^2 + 4^2 + (-5)^2}}$$

Or, 
$$\frac{2}{\sqrt{45}}, \frac{4}{\sqrt{45}}, \frac{-5}{\sqrt{45}}$$

